Credit Hours: 3+1 | PRACTICAL | | | | |------------|------------|----|----| | Paper-I | 1, 2 and 3 | 60 | 20 | | Paper - II | 4, 5 and 6 | 60 | 20 | ## (vi) **DEPARTMENT OF ANIMAL GENETICS AND BREEDING** #### ANIMAL GENETICS AND BREEDING #### **THEORY** ### UNIT-1 (BIOSTATISTICS AND COMPUTER APPLICATION) Biostatistics: Introduction and importance of statistics and biostatistics, Classification and tabulation of data. Parameter, Statistic and Observation. Graphical and diagrammatic representation of data. Measures of Central tendency (simple and grouped data). Measures of Dispersion (simple and grouped data). Probability and probability distributions: Binomial, Poisson and Normal. Moments, Skewness and Kurtosis. Correlation and Regression. Introduction of sampling methods. Tests of hypothesis- t and Z- tests. Chi-square test. Design of experiment- Completely randomized design (CRD). Randomized block design (RBD). Analysis of variance and F-test of significance. Introduction to Non-parametric tests. Computer Application: Introduction to computer languages. Data Base Management. Review of MS-Office and its components (MS-Word, Excel, Power Point and Access). Analysis of data using MS-Excel. Concepts of computer networks, internet & e-mail. ## **UNIT-2 (PRINCIPLES OF ANIMAL AND POPULATION GENETICS)** Animal Genetics: History of Genetics. Mitosis vors Meiosis. Chromosome numbers and types in livestock and poultry. Overview of Mendelian principles. Modified Mendelian inheritance. Pleiotropy, Penetrance and expressivity. Multiple alleles; lethals; sex-linked, sex limited and sex influenced inheritance. Sex determination. Linkage, crossing over and construction of linkage map. Mutation, Chromosomal aberrations. Cytogenetics, Extra-chromosomal inheritance. Molecular genetics, nucleic acids-structure and function. Gene concept, DNA and its replication. Introduction to molecular techniques. Population Genetics: Introduction to population genetics; individual vors population. Genetic structure of population: Gene and genotypic frequency. Hardy - Weinberg law and its application. Forces changing gene and genotypic frequencies (eg Mutation, migration, selection and drift). Quantitative vors qualitative genetics; concept of average effect and breeding value. Components of Variance. Concept of correlation and interaction between Genotype and Environment. Heritability and Repeatability. Genetic and Phenotypic Correlations. ## **UNIT-3 (PRINCIPLES OF ANIMAL BREEDING)** Livestock and Poultry Breeding: History of Animal Breeding. Classification of breeds. Economic characters of livestock and poultry and their importance. Selection, types of selection, response to selection and factors affecting it. Bases of selection: individual, pedigree, family, sib, progeny and combined, indirect selection. Method of selection, Single and Multi trait. Classification of mating systems. Inbreeding coefficient and coefficient of relationship. Genetic and phenotypic consequences of inbreeding depression, application of inbreeding. Out breeding and its different forms. Genetic and phenotypic consequences of outbreeding, application of outbreeding, heterosis. Systems of utilization of heterosis; Selection for combining ability (RS and RRS). Breeding strategies for the improvement of dairy cattle and buffalo. Breeding strategies for the improvement of sheep, goat, swine and poultry. Sire evaluation. Open nucleus breeding system (ONBS). Development of new breeds or strains. Current livestock and poultry breeding policies and programmes in the state and country. Methods of conservation- livestock and poultry conservation programmes in the state and country. Application of reproductive and biotechnological tools for genetic improvement of livestock and poultry. Breeding for disease resistance. Breeding of pet, zoo and wild animals: Classification of dog and cat breeds. Pedigree sheet, selection of breeds and major breed traits. Breeding management of dogs and cats. Common pet birds seen in India and their breeding management. Population dynamics and effective population size of wild animals in captivityorzooornatural habitats. Planned breeding of wild animals. Controlled breeding and assisted reproduction. Breeding for conservation of wild animals. ## **PRACTICAL** # UNIT-1 (BIOSTATISTICS AND COMPUTER APPLICATION) Collection, compilation and tabulation of data. Estimation of measures of central tendency (mean, median, mode) for simple and grouped data. Estimation of measures of dispersion (Range, standard deviation, standard error, variance, and coefficient of variation) for simple and grouped data. Graphical and diagrammatic representation of data. Estimation of correlation and regression. Simple probability problems, Normal distribution. Tests of significance: t-test, Z – test, Chi- square, F- tests. Completely randomized design (CRD). Randomized block design (RBD). Computer basics and components of computer. Simple operations: internet and e-mail, Entering and saving biological data through MS-Office (MS-Excel) #### UNIT-2 (PRINCIPLES OF ANIMAL AND POPULATION GENETICS) Monohybrid, Dihybrid cross and Multiple alleles. Modified Mendelian inheritance and sex linked inheritance. Linkage and crossing over. Demonstration of Karyotyping in farm animals. Calculation of gene and genotypic frequencies, Testing a population for Hardy-Weinberg equilibrium. Calculation of effects of various forces that change gene frequencies. Computation of population mean, average effect of gene and gene substitution and breeding value. Estimation of repeatability, heritability, genetic and phenotypic correlations. ## **UNIT-3: (PRINCIPLES OF ANIMAL BREEDING)** Computation of selection differential and intensity of selection, Generation interval, expected genetic gain, correlated response, EPA and Most probable producing ability (MPPA). Estimation of inbreeding and relationship coefficient. Estimation of heterosis. Computation of sire indices. Computation of selection index. | ANNUAL EXAMINATION | | | | | | |--------------------|---------|------------------|-----------|--|--| | PAPERS | UNITS | MAXIMUM
MARKS | WEIGHTAGE | | | | THEORY | | | | | | | Paper-I | 1 and 2 | 100 | 20 | | | | Paper-II | 3 | 100 | 20 | | | | | | | | | | | PRACTICAL | | | | | | | Paper-I | 1 and 2 | 60 | 20 | | | | Paper - II | 3 | 60 | 20 | | | ### (vii) **DEPARTMENT OF ANIMAL NUTRITION** ANIMAL NUTRITION Credit Hours: 3+1 ## THEORY ### UNIT-1 (PRINCIPLES OF ANIMAL NUTRITION AND FEED TECHNOLOGY) History of animal nutrition. Importance of nutrients in animal production and health. Composition of animal body and plants. Nutritional terms and their definitions. Nutritional aspect of carbohydrates, protein and fats. Role and requirement of water, metabolic water. Importance of minerals (major and trace elements) and vitamins in health and production, their requirements and supplementation in feed. Common feeds and fodders, their classification, availability and importance for livestock and poultry production. Measures of food energy and their applications - gross energy, digestible energy, metabolizable energy, net energy, total digestible nutrients, starch equivalent, food units, physiological fuel value. Direct and indirect calorimetry, carbon and nitrogen balance studies. Protein evaluation of feeds - Measures of protein quality in ruminants and non-ruminants, biological value of protein, protein efficiency ratio, protein equivalent, digestible crude protein. Calorie protein ratio. Nutritive ratio. Introduction to feed technology- Feed industry; Processing of concentrates and roughages. Various physical, chemical and biological methods for improving the nutritive value of inferior quality roughages. Preparation, storage and conservation of livestock feed through silage and hay and their uses in livestock feeding. Harmful natural constituents and common adulterants of feeds and fodders. Feed additives in the rations of livestock and poultry and their uses. ## **UNIT-2 (APPLIED RUMINANT NUTRITION-I)** Importance of scientific feeding. Feeding experiments. Digestion and metabolism trial. Norms adopted in conducting digestion trial. Measurement of digestibility. Factors affecting digestibility of a feed. Feeding standards, their uses and significance, merit and demerits of various feeding standards with reference to ruminants. Balanced ration and its characteristics. # **UNIT-3 (APPLIED RUMINANT NUTRITION-II)** Nutrient requirements and methods for assessing the energy and protein requirements for maintenance and production in terms of growth, reproduction, milk, meat, wool and draft purpose. General principles of computation of rations.